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Time and Space Symmetry

A simple harmonic oscillator has oscillation in space but not in time.

Following the spirit of relativity, can matter has oscillation in time?

Assuming a particle can oscillate in proper time:

1. Spacetime around is the Schwarzschild field.
2. Reconcile same properties of a quantum field (bosons and
fermions).
3. Proper time oscillation satisfies an uncertainty relation analogous
to position-momentum uncertainty relation.
4. Higgs boson as a proper time oscillator.
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Fluctuation of Neutrino’s Arrival Time

Study in quantum gravity (lightcone fluctuation) evaluates the
accumulated uncertainty effects of a neutrino’s travel time and
distance in fluctuating spacetime.

Suggested uncertainty follows a power-law depending on the
neutrino’s energy, i.e., ∆t ′ ∝ lmEn. , where m and n are factors to be
established by experiments or theoretical predictions.

Uncertainty derived from temporal oscillation is ∆t ′ ∝ E 1/2 akin
to the power-law from lightcone fluctuation.
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Oscillator in Space

Analogy as a particle traveling at average v, but oscillate with angular
frequency ω and amplitude X̊,

x̊f = vt − X̊ sin(ωt). (1)

Replace motions in space with motions in time. Assume proper
time of a stationary particle also oscillates

t̊f = t − T̊0 sin(ω0t), T̊0 = 1/ω0. (2)
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Particle appear to travel along timelike geodesic if the instrument
used not sensitive enough.

Particles never travel backward in time.

internal time evolves tightly with the coordinate time..
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Schwarzschild Field

Spacetime outside proper time
oscillator is Schwarzschild
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Past Examples Schwarzschild Metric without General
Relativity

Lenz W 1944 unpublished work cited by Sommerfeld A

Schiff L I 1960 On experimental tests of the general theory of
relativity Am. J. Phys. 28 340-343

Hamilton A J S and Lisle J P 2004 The river model of black holes
Am. J. Phys

Laschkarew W 1926 Zur Theorie der Gravitation Z.Physik 35 473-476

Czerniawski J The possibility of a simple derivation of the
Schwarzschild metric rXiv:gr-qc/0611104

ds2 = [1−
¯
v2]dt2 − [1−

¯
v2]−1dx2 − dy2 − dz2. (3)
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Counter Eamples

Counterexamples: Schild, A. Equivalence Principle and Red-Shift
Measurements. Am. J. Phys. 1960, 28, 778

Counterexamples: Gruber R P, Price R H, Matthews S M, Cordwell
W R and Wagner L F 1988 The impossibility of a simple derivation of
the Schwarzschild metric Am. J. Phys. 56 265-269

Counterexamples: Rindler W 1968 Counterexample to the Lenz-Schiff
argument Am. J. Phys. 36 540-544 ”

Kassner; Impossible only with SR, EP and NL 2018

”It is the spatial-distortion aspect of gravity that ensures that too
simple a derivation of the Schwarzschild metric must fail”. It is a
coincidence Schwarzschild solution has recirpocal terms.

In our analysis, we applied Einstein’s equation.

However, there could be a reason for the reciprocity condition.

ds2 = [1−
¯
v2]dt2 − [1−

¯
v2]−1dx2 − dy2 − dz2. (4)
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Plane Wave Describing Oscillations in Space and Time

Define a plane wave with oscillation in time and space:

t ′f = t ′ + t ′d = t ′ + Re(ζtk) = t ′ + Tk sin(k · x′ − ωt ′), (5)

x′f = x′ + x′d = x′ + Re(ζxk) = x′ + Xk sin(k · x′ − ωt ′), (6)

where
ζtk = −iTke

i(k·x′−ωt′), (7)

ζxk = −iXke
i(k·x′−ωt′), (8)

ζtk and ζxk form a Lorentz covariant plane wave[
ζtk
ζxk

]
= −i

[
Tk

Xk

]
e i(k·x

′−ωt′). (9)
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Decomposition of Temporal Oscillation

Proper time oscillation at x0 is a pulse that can be decomposed.

For a relativistic theory, utilize Lorentz covariant plane waves for the
decomposition [

ξ̄tk
ξ̄xk

]
= −i

[
T̄k

X̄k

]
e i(k·x−ωt). (10)

Plane waves to characterize the fluctuations in spacetime geometry
caused by the proper time oscillation.
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Decomposition of Temporal Oscillation

[
ξ̄tk
ξ̄xk

]
= −i

[
T̄k

X̄k

]
e i(k·x−ωt). (11)

Apply ξ̄tk from Eq. (11) to carry out the decomposition for the
proper time oscillation.

ξ̄tk is only the 0-component of a Lorentz covariant plane wave.

Spatial component ξ̄xk cannot be neglected.

Superpose ξ̄tk to obtain the proper time oscillation will have spatial
oscillations associated with the superposition of ξ̄xk.
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Rest Mass System

In spherical coordinates, the proper time oscillation and the radial
oscillations revealed after the superposition are:
At r = 0,

t̄f (t, 0) = t − sin(ω0t)

ω0
, (12)

r̄f (t, 0) = 0. (13)

At r = ϵ/2 → 0,
t̄f (t, ϵ/2) = t, (14)

r̄f (t, ϵ/2) = ϵ/2 + ℜ∞ cos(ω0t), (15)

where ℜ∞ is the amplitude of radial oscillations.

Hou Y. Yau (SFSU) Proper Time Oscillator June 2024 14 / 61



Radial Oscillations not Vibration of Matter through Space

r̄f (t, ϵ/2) = ϵ/2 + ℜ∞ cos(ω0t), (16)

Radial oscillations results from superposing the spatial component of
the Lorentz covariant plane waves.

Radial oscillations oscillate about a thin shell Σ0 with infinitesimal
radius (r = ϵ/2 → 0).

Amplitude of the radial oscillation (ℜ∞ → ∞) violate relativity if
oscillations involve motions of matter.

Consider the radial oscillation as a spacetime geometrical effect acting
on an observer stationary on the thin shell Σ0.
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Fictitious Frame of Oscillation

t̄f (t, ϵ/2) = t, (17)

r̄f (t, ϵ/2) = ϵ/2 + ℜ∞ cos(ω0t). (18)

Clock of O is synchronized with the clock of a ’fictitious’ observer
¯
O

that follows the radial oscillation defined in Eq. (18).

Observer Ŏ placed on the thin shell will oscillate relative to
¯
O.

Clocks of O and
¯
O are synchronized, the clocks of Ŏ and O cannot

be synchronized imply the spacetime geometry (or metrics) at O and
Ŏ are different.

Study a thin shell with a finite radius that has an instantaneous
fictitious velocity of less than the speed of light.
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Thin Shell with Fictitious Radial Oscillations

Investigate a similar timelike hypersurface Σ with finite radius r̆ .

Apply same fictitious oscillations but with instantaneous velocities
v̄f (t) less than the speed of light

t̄f (t, r̆) = t, (19)

r̄f (t, r̆) = r̆ + ℜ cos(ω0t), (20)

v̄f (t, r̆) =
∂ r̄f (t, r̆)

∂t
= −ℜω0 sin(ω0t). (21)

Apply relativity to analyze the effects on the observer Ŏ stationary on
the thin shell’s surface.
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Time Translational Symmetry

Fictitious oscillation has displacement and instantaneous velocity.

Total energy generated by the instantaneous velocity and
displacement constant over time for a harmonic oscillator.

System has a time translational symmetry - Noether’s theorem.

Total effects of the instantaneous velocity and displacement on Ŏ are
constant over time.
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Measurements on Thin Shell

Relate infinitesimal coordinate increments (dt, dr) of two events
observed by O in terms of the infinitesimal coordinate increments
(dt̆, dr̆), [

dt
dr

]
=

[
Υt

t̆ 0
0 Υr

r̆

] [
dt̆
d r̆

]
. (22)

Two off-diagonal terms of the transformation matrix Υ are zeros.

Basis vectors of O and Ŏ are parallel.

Basis vectors in the temporal and spatial directions are orthogonal in
the local frames of O and Ŏ.
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Effects at t = tm = π/(2ω0)

At t = tm = π/(2ω0), fictitious displacement r̄d(=r̄f − r̆) is zero.

Instantaneous velocity is,

v̄f (tm, r̆) = v̄fm = −ℜω0. (23)

Ŏ on the thin shell traveling at
¯
vfm(= −v̄fm = ℜω0 < 1) relative to

¯
O

without displacement.

Apply relativity to study the properties of a moving observer.

At this instant, measurements by Ŏ undergo length contraction and
time dilation relative to

¯
O.
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Time Translational Symmetry

¯
O is a fictitious inertial observer with its clock synchronized with O at
spatial infinity.

Although Ŏ remains stationary with O, its measurements will
undergo the same length contraction and time dilation relative to O

Υt
t̆ = [1− (v̄fm)

2]−1/2 = (1−ℜ2ω2
0)

−1/2, (24)

Υr
r̆ = [1− (v̄fm)

2]1/2 = (1−ℜ2ω2
0)

1/2. (25)

Based on time translational symmetry, results are cosntant over time

ds2 = [1−ℜ2ω2
0]dt

2 − [1−ℜ2ω2
0]

−1dr2 − r̆2dΩ2. (26)
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Schwarzschild Field

Metric at r = r̆ is line element of Schwarzschild if

m =
r̆ℜ̆2ω2

0

2
. (27)

The vacuum space–time υ+ outside this time-like hypersurface is the
Schwarzschild spacetime,

ds2 = [1− r̆ ℜ̆2ω2
0

r
]dt2 − [1− r̆ ℜ̆2ω2

0

r
]−1dr2 − r2dΩ2. (28)
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Contraction of Thin Shell

Time-like hypersurface Σ can be contracted per Birkhoff’s theorem.

As long as mass m of the shell is remaining constant, the metric and
curvature of the external field will not be affected.

The amplitude of the radial oscillation is,

ℜ̆ =

√
2

r̆ω0
, (29)

Spacetime curvature tensors derived are well defined as the shell is
contracted until it reaches a radius r̆ = ϵ/2.

Shell becomes infinitely small but with ℜ̆ → ∞.

This infinitely small shell of radius r̆ = ϵ/2 is the same shell we have
described earlier.

As predicted by Birkhoff’s theorem, the metric around this infinitely
small shell is the Schwarzschild spacetime.
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Singularity

When shell is contracted to a radius r̆ = 2m (the event horizon), the
metric still encounters a coordinate singularity.

Although fictitious instantaneous velocity on a shell inside event
horizon can exceed the speed of light (i.e.

¯
vfm > 1 when r̆ < 2m),

they are not physical vibrations of matter.

As information about the geometrical properties of spacetime, there is
no superluminal transfer of energy.

The metric on the surface of the shell is well defined until the radius
is contracted to r̆ = ϵ/2.

Shell can be contracted even beyond radius r̆ = 2m as allowed by
Birkhoff’s theorem while maintaining Schwarzschild geometry.
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Gavitational Field

The proper time oscillator exerts fictitious radial
oscillations on a thin shell with an infinitesimal radius.

These radial oscillations alter the spacetime metric on the
thin shell’s surface and curve the surrounding external
spacetime. In turn, the curved spacetime tells other

matter how to react in the presence of the proper time
oscillator.
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Proper Time Quantization

Proper time oscillaton matter field
must be quantized
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Plane Wave Describing Oscillations in Space and Time

Define a plane wave with oscillation in time and space:

t ′f = t ′ + t ′d = t ′ + Re(ζtk) = t ′ + Tk sin(k · x′ − ωt ′), (30)

x′f = x′ + x′d = x′ + Re(ζxk) = x′ + Xk sin(k · x′ − ωt ′), (31)

where
ζtk = −iTke

i(k·x′−ωt′), (32)

ζxk = −iXke
i(k·x′−ωt′), (33)

ζtk and ζxk form a Lorentz covariant plane wave[
ζtk
ζxk

]
= −i

[
Tk

Xk

]
e i(k·x

′−ωt′). (34)
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Plane Wave Describing Oscillations in Space and Time

Define a plane wave,

ζk =
T0k

ω0
e i(k·x−ωt). (35)

Temporal and spatial oscillation displacements can be written as

ζtk = ∂0ζk = −iTke
i(k·x−ωt), (36)

ζxk = −∇ζk = −iXke
i(k·x−ωt). (37)

ζk satisfies the Klein Gordon equation:

∂u∂
uζk + ω2

0ζk = 0. (38)
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Hamiltonian Density

A system in a volume V with multiple particles of mass m.

Impose periodic boundary conditions at the box walls.

The corresponding Hamiltonian density

Hk =
mω2

0

2V
[(∂0ζ

∗
k )(∂0ζk) + (∇ζ∗k ) · (∇ζk) + ω2

0ζ
∗
kζk]. (39)
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Proper Time Quantization

Consider a plane wave with oscillation in proper time only

ζ0 =
T0

ω0
e−iω0t . (40)

Hamiltonian density is,

H0 = (
mω2

0

V
)T ∗

0T0. (41)

Matter in plane wave has no spatial motion.

Energy belong to some intrinsic energy of the system.

Field considering is ’free’ with no charges or force fields.

Adopt the energy in H0 as the intrinsic mass-energy of matter.
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Proper Time Quantization

Plane wave with n number of particles, Hamiltonian density is
H0 = nm/V .

Compare with Eq. (41), energy E in volume V is,

E = nm = mω2
0T

∗
0T0, (42)

Mass is on-shell leads to a quantization condition,

ω2
0T

∗
0T0 = n. (43)

Number of particles is discrete - Proper Time Oscillators.

Matter field with proper time oscillations is a quantized field.
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Bosonic Field

Matter field with oscillations in
time has same properties of a

bosonic field
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Bosonic Field

A real scalar field by superposition of ζk and ζ∗k

ζ(x) =
∑
k

(2ωω0)
−1/2[T0ke

−ikx + T ∗
0ke

ikx ]. (44)

Transform into a quantized field through canonical quantization.

Relate ζ(x) with the bosonic field φ(x) in quantum theory

φ(x) = ζ(x)

√
ω3
0

V
=

∑
k

(2ωV )−1/2[ake
−ikx + a†ke

ikx ]. (45)

Annihilation and creation operators

ak = ω0T0k, a†k = ω0T
†
0k. (46)

Matter field with oscillations in time has same properties of a
bosonic field.
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Self-Adjoint Time operator

Internal time is a self-adjoint
operator
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Self-Adjoint Time Operator

Displaced time linearly related to the conjugate momenta η(x)

td(x) = ζt(x) = ∂0ζ(x) =
∑
k

−i√
2
[T̃ke

−ikx − T̃ †
k e

ikx ] =
η(x)V

ω3
0

. (47)

td(x) and ζ(x) also form a conjugate pair

(
ω3
0

V
)[ζ(t, x), td(t, x

′)] = iδ(x− x′), (48)

[td(t, x), td(t, x
′)] = 0. (49)

ζ(x), η(x) and td(x) are self-adjoint operators.

Displaced time td oscillates back and forth relative to the external
time tand its spectrum is not bounded.
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Self-Adjoint Time Operator

Internal time in a matter field is

tf (t, x) = t + td(t, x). (50)

t is a parameter, but td(t, x) is a self-adjoint operator.

Internal time tf must also be a self-adjoint operator.

No conflict with Pauli’s theorem.
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Proper Time Oscillator

Proper time uncertainty relation
analogous to position-momentum

uncertainty relation
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Proper Time Field

Consider a real scalar field that has oscillations of matter in proper time
only

ζ ′ =
1√
2
[ζ0 + ζ†0] =

1√
2ω0

[T0e
−iω0t + T †

0 e
iω0t ]. (51)

Displaced time t ′d and displaced time rate u′d are,

t ′d =
−i√
2
[T0e

−iω0t − T †
0 e

iω0t ] =
−i√
2ω0

[ae−iω0t − a†e iω0t ], (52)

u′d = ∂0t
′
d =

−ω0√
2
[T0e

−iω0t+T †
0 e

iω0t ] =
−1√
2
[ae−iω0t+a†e iω0t ]. (53)

The Hamiltonian density is

H ′ =
1

2
(mω2

0t
′
d
2
+

P ′
d
2

m
) = ω0(a

†a+
1

2
), (54)

where
P ′
d = mu′d . (55)
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Uncertainty Relations Comparison

Table 1

Proper Time Oscil-
lator

Quantum Harmonic
Oscillator

Hamiltonian H ′ = ω0(a
†a+ 1

2) H = ω(a†a+ 1
2)

Commutation
Relation

[t ′d ,P
′
d ] = i [x,p]=i

Uncertainty
Relation

∆t ′d∆P ′
d ≥ 1

2 ∆x∆p ≥ 1
2

Creation and annihilation operators for bosonic field and quantum
harmonic oscillator have similar formulation. Can there be a hidden
symmetry?
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Dirac Field

Fermionic Field with Proper Time
Oscillation
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Dirac Field

As an intrinsic property of a particle, the properties of mass are the same
for all massive particles regardless of their spins.

ψα =
1√
V

∑
s

∑
p

1√
2Ep

(ω0T0a(p, s)uα(p, s)e
−ipẋ+ω0T

†
0b(p, s)vα(p, s)e

ipẋ),

(56)

ψ†
α =

1√
V

∑
s

∑
p

1√
2Ep

(ω0T0a†(p, s)u†α(p, s)e−ipẋ+ω0T0b(p, s)v
†
α(p, s)e

ipẋ).

(57)
Rewrite creation and annihilition operators for fermion and anti-fermion in
terms of the proper time amplitudes:

a = ω0T0a b† = ω0T
†
0b. (58)
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Dirac Field

Proper time amplitudes satisfy anti-commutation relations:

{T0a(p, s),T
†
0a(p

′s ′)} = δss′δpp′/ω
2
0, (59)

{T0b(p, s),T
†
0b(p

′s ′)} = δss′δpp′/ω
2
0. (60)

The Hamiltion is:

H =
∑
p,s

E (p)ω2
0[T

†
0a(p.s)T0a(p, s) + T †

0b(p, s)T0b(p, s)], (61)

which are the summation of energy for fermions and anti-fermions with
proper time oscillations.
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Electromagnetic Field

Electromagnetic Field with Proper
Time Oscillation
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Electromagnetic Field

Electromagmetic field with polarization λ = 1, 2,

Aµ =

∫
d3p

2p0(2π)3

∑
λ

[aλ,pϵ
(λ)
p e−ipẋ + a†λ,p(ϵ

(λ)
p )†e ipẋ ]. (62)

Electromagnetic field has same structure as the fermionic field but
with polarization.

Photon has no proper time! Whether a photon has oscillation can
only be determined by experiments.

What happen after spontaneous symmetry breaking?
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Higss Field

Higgs Boson as Proper Time
Oscillator
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Higgs Field

Higgs Boson as a particle with oscillation in proper time.

Beginning with a massless gauge field Aµ and a complex scalar field
ϕ = ϕ1 + iϕ2.

The Lagrangian of this photon field coupling to a scalar field assumes
the form,

L = −1

4
FµυF

µυ + (Dµϕ)
∗(Dµϕ)− V (ϕ2). (63)

where
V (ϕ2) = µ2ϕ2 + λϕ4. (64)
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Higgs Field

Choosing the ground state at ϕ = υ spontaneously break the
symmetry of the Lagrangian.

The resulting Lagrangian density is

L =
1

2
∂µh∂

µh − λυ2h2 − 1

4
FµυF

µυ +
1

2
g2
0υ

2AµA
µ + g2

0υAµA
µh

+
1

2
g2
0AµA

µh2 − λυh3 − 1

4
λh4.

The Higgs field h(x) has mass
√
2λυ. The photon in an Abelian

gauge field acquires a mass m = g0υ.

Interaction with Higgs field causes some of the massless bosons
to oscillate in proper time.
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Consistancy with Standard Theory

Consistent with the predictions of
quantum theory and general

relativity
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Muon Decay Time
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Muon Decay Time

The uncertainty of decay time measurement.

∆t ′ =

√
ω

2ω3
0

= ℏ
√

E

2m3
. (65)

Muon mass-energy mµ = 105.6583744× 106 eV.

Assume projected energy E = 1TeV.

Uncertainty ∆t ′ = 4.3× 10−22s.

Mean life time of muon decay ∆tµ = 2.1969811(22)× 10−6s
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Moving Oscillator

Consider a normalized plane wave

ζ̃ =
e i(k·x−ωt)√

ωω3
0

. (66)

Hamiltonian density is
H̃ = ω/V . (67)

Observed particle travels at an average velocity of v = k/ω.

As the particle propagates, it oscillates with amplitudes

T̊ =

√
ω

ω3
0

, X̊ =
k√
ω3
0ω
. (68)

At a higher energy level, the effects of the particle’s oscillations
will be easier to detect.
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Moving Oscillator

Even for a π+ particle with an energy 1 TeV, detecting the
oscillations is still beyond the reach of our experiments.
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Consistancy with Standard Theory

Poperties of a proper time oscillator stay consistent with the
predictions of quantum theory until we reach a very high energy
level, where the oscillations of matter in time and space become
significant. However, the oscillations are small and cannot be
detected by experiments yet.
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Particle’s Arrival Time

Neutrino’s arrival time
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Particle’s Arrival Time

Neutrino has extreme small mass and much larger amplitudes of
oscillations.
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Estimate for Neutrio Mass

The deviations will result in an uncertainty of arrival time when we
measure a large collection of particles with the same average velocity, i.e.

∆t ′ =

√
ω

2ω3
0

= ℏ
√

E

2m3
. (69)

With the arrival time uncertainty obtained from experiments, the mass of
a neutrino can be reconciled,

m = [
ℏ2E

2(∆t ′)2
]1/3. (70)
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Fluctuation of Neutrino’s Arrival Time

The experiments (e.g. IceCube) on neutrinos’ speed could provide
some hints.

Study in lightcone fluctuation evaluated the accumulated uncertainty
effects of a neutrino’s travel time and distance in fluctuating
spacetime.

Suggested uncertainty follows a power-law depending on the
neutrino’s energy, i.e., ∆t ′ ∝ lmEn. , where m and n are factors to be
established by experiments or theoretical predictions.

Uncertainty derived from temporal oscillation is ∆t ′ ∝ E 1/2 akin
to the power-law in quantum spacetime.

Assuming m = 0.2eV and E = 1TeV , uncertainty is in the order of
10−9s.
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Fluctuation of Neutrino’s Arrival Time
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Conclusion

Assuming matter can oscillate in proper time:

Reconcile basic properties of a quantum field.

Spacetime around has the Schwarzschild solution.

Neutrino time of arrival may provide hints.
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