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OVERVIEW

Abstract: Tunnelling between two degenerate vacua is allowed in finite-volume
Quantum Field Theory. This effect induces a non-trivial vacuum energy, which
result from the competition of different saddle point configurations in the
partition function. In this talk, I will describe this mechanism and discuss its
relevance to induce a cosmological bounce.

1. Introduction and main results.
Framework, discussion and results.
Assumptions, methods and limitations.

2. The effective theory.
Partition function and saddle points.
Vacuum energy.

3. Towards a cosmic bounce.
Friedmann equations.
Anisotropic universe.

1



Part I

Introduction, assumptions and main results
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FRAMEWORK: QFTCS VS. SEMICLASSICAL GRAVITY

QFT in curved spaces studies the behaviour of quantum matter fields as test
fields propagating in a specific background.

A second step to better understand the interaction between quantum fields
and gravity is to study the backreaction problem, i.e., the effect of quantum
fields on the background metric.

Semiclassical gravity.

We have to solve the semiclassical Einstein equations in a self-consistent way:

κ−1“Gµν” = T class
µν + ⟨Tµν⟩ren
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KEY CONCEPT: THE NULL ENERGY CONDITION

Singularity theorems. They show that singularities (in cosmology) are in-
evitable under very general circumstances.

However, they have in their assumptions a restriction on the energy-momentum
tensor.

The Null Energy Condition (NEC)

Tµνℓ
µℓν ≥ 0 ,

where ℓµ is a null vector. For a perfect fluid the null energy condition reads

ρ+ p ≥ 0 .

▶ Energy conditions can be violated by quantum fields.

If the NEC is violated→ can we avoid the “initial singularity”?
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NEC VIOLATION: THE CASIMIR EFFECT

Example: The Casimir effect

Ecas ≡ Ediscrete − Econtinuum

Electromagnetic ground energy, massless scalar field.

Ecas = − π2A
720a3 ,

ρ =
Ecas
aA = − π2

720a4 ,

p = − 1
A

∂Ecas
∂a = − π2

240a4

NEC violation:

ρ+ p < 0 .
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MAIN RESULTS

In finite volume, there is another affect:
NEC violation via tunnelling

Real scalar field with a double-well bare potential with two degenerate min-
ima in finite volume V0.

U(ϕ) =
λ

4! (ϕ
2 − v2)2 + κ−1Λ .

In this context, quantum tunneling can happen between the two minima.
Symmetry restoration; convexity. Only one ground/vacuum state → We are
interested in the vacuum energy.
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MAIN RESULTS

The effective potential reads:

Ueff(ϕc) = U0 + M 2ϕ2
c +O(ϕ4

c) , α3 =
S0

ℏ
and S0 ∼ L3

0

U0 = κ−1Λ
(

1 − r e−α3

α3/2

)
r =

λκv4

3
√

3πΛ

From this result, we can compute the stress-energy tensor of the ground state:
the Null Energy Condition (NEC) is violated

κ

Λ
(ρ+ p) = −r e−α3

(
α3/2 +

1
2α

−3/2
)

< 0 .

We can couple this effect to gravity via the Einstein equations.

[FLRW metric; homogeneous ground state fluid→ perfect fluid]

If we start from a contracting phase H < 0, we can induce a bounce.
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ASSUMPTIONS, METHODS, AND LIMITATIONS

▶ Finite Volume→ allows tunnelling [3-torus, 3-sphere, box...].
∙ For simplicity we consider periodic boundary conditions.
Fundamental volume cell V0 = L3

0 . Comoving volume a3L3
0 .

∙ We neglect spatial curvature K.

▶ Adiabatic approximation. Expansion rate ȧ
a ≪ tunneling rate (intantaneous

effect).

We set a = cte for the computation of the effective theory.
We couple the effective theory to gravity restoring a = a(t).

▶ Equilibrium QFT techniques: Path integral approach in the ⟨in|out⟩ formal-
ism. Wick rotation. Euclidean/imaginary time is needed to study this effect.

Naively t → τ = it ; √−g → √gE ; iS → −SE...
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Part II

The effective theory
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FINDING THE EFFECTIVE THEORY

We start from the classical theory:

How do we arrive to U0?

▶ We should find the partition function Z[j ] describing the system.
∙ Saddle point expansion (one-loop expansion)

ϕ = ϕs + δϕ ; ϕs ≡ classical solution δϕ ≡ quantum fluctuation

∙ Semiclassical approximation: several saddle points ϕn are relevant for our
analysis. We sum over all relevant configurations.

ZE[j ] =
∫

D[ϕ]e−S[ϕ]/ℏ ≃
∑

n
Zn ; Zn = Fn e−S[ϕn]/ℏ .
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RELEVANT SADDLE POINTS

Relevant saddle points.
▶ Static saddle points.
▶ Instantons [gas of instantons; dilute gas approximation].

In imaginary time U(ϕ) → −U(ϕ) . “Upside down potential”.

Note: we focus on homogeneous configurations ϕs = ϕs(t).

ϕ′′ + ω2ϕ− ω2

v2 ϕ3 = j , ω2 =
λv2

12 =
m2

2
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RELEVANT SADDLE POINTS

Let’s focus on j = 0 (the vacuum).

▶ Static Saddle points.

ϕ1,2 = ±v S1,2 = a3L3
0T Λ̄ .

▶ Instantons. The basic solution is

ϕi = ±v tanh(ω(t − t1)) , S = a3S0 ∝ a3L3
0

We can also have multiple jumps

ϕ(p) ≃ v p tanh(ω(t− t1)) tanh(ω(t− t2)) · · · tanh(ω(t− tp)) , S = pa3S0
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RELEVANT SADDLE POINTS

▶ We have to sum over all the classical configurations.

ZE = [v] + [−v] + [K ] + [K̄ ] + [KK̄ ] + [K̄K ] + [KK̄K ] + · · ·

where

[v] = [−v] = e−a3L3
0TΛ̄+TEcas(L) , [K ] =

∫ T/2

T/2
dt1[I ][v] = T [I ][v]

and with

[I ] =
√

a3S0

2π e−a3S0

(
det′ S ′′

E [ϕi]

det S ′′
E [v]

)− 1
2
≃

√
12ω

√
a3S0

2π e−a3S0 .

▶ For N-jumps we find[
K1K2 . . .KN−1KN

]
≈ TN

N!
[I ]N[v ] ,

▶ The partition function can be resummed!

ZE = 2[v]e−T [I ]
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VACUUM ENERGY

The vacuum energy is obtained for j = 0 [assuming a = 1]:

E0 = − lim
T→∞

1
T lnZE[0] = Estat − [I ]

where

Estat = − lim
T→∞

1
T log[v ] = V0Λ̄ + Ecasimir ,

[I ] ≃
√

12ω
√

S0

2π e−S0 , S0 ∝ V0 = L3
0 .

with

Ecasimir =
1
2
∑

n

√
k2

n + m2 −
V0
2

∫
R3

d3k
(2π)3

√
k2 + m2

This result is strongly dependent on the geometry/topology. For a 3-torus (periodic
boundary conditions) Ecasimir < 0 and bigger than [I ].
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VACUUM ENERGY

For the three torus Ecasimir is always negative. Asymptotically

Ecasimir → −β

L for mL ≪ 1

Ecasimir → − γ

L
√

(mL)3e−mL for mL ≫ 1
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THERMODYNAMICS AT ZERO TEMPERATURE

The thermodynamic pressure and energy density (at zero temperature) can be
defined as

ρ ≡ 1
V Ftrue ,

p ≡ −∂Ftrue

∂V .

where Ftrue = E0 = Estat − [I ].

The isothermal compressibility

K ≡ − 1
V

∂V
∂p ≡ 1

V

(
∂2Ftrue

∂V 2

)−1

is negative for all V.

This is a sign of instability!
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Part III

Towards a cosmic bounce
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VACUUM ENERGY

Concrete example: Let us forget about the Casimir energy.
We have derived the properties of the quantum vacuum from the minimum
of the effective action, i.e., the minimum of the potential

Ueff(ϕc = 0) = κ−1Λ

(
1 − re−α3

α3/2

)
,

with
α3 = a3 S0

ℏ
and r =

λκv4

3
√

3πΛ
.

In particular, we can obtain the energy density and the pressure

κρ

Λ
= ρ̃ = +1 − re−α3

α3/2

κp
Λ

= p̃ = −1 − re−α3
(
α3/2 − α−3/2

2

)
.

We can couple this ground state fluid to the Einstein equations and study its
consequences.
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EINSTEIN EQUATIONS

Friedmann equations

H 2 =
κ

3 ρ (constraint); ä
a = −κ

6 (ρ+ 3p) (dynamics);

We solved the Friedmann equations for different values of r, and focusing on
H(t0) < 0 (initial contracting phase).

Note: If a bounce occurs, then H = 0 and H ′ > 0. This implies ρ = 0 and ρ+ 3p < 0.
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ADDING ANISOTROPIES

Question: How robust is this solution?
We can add a second component to test it. We focus on the case of anisotropy,
since it is the component that dominates the energy budget the quickest dur-
ing a collapse. Bianchi-I metric:

ds2 = −dt2 + a2
1 dx2 + a2

2 dy2 + a2
3 dz2

We work with averaged quantities: a3 = a1a2a3

H =
1
3 (H1 + H2 + H3) , σ2 =

1
18

[
(H1 − H2)

2 + (H2 − H3)
2 + (H1 − H3)

2
]

Note: ρ and p remain the same, with the change αiso → α =
√
α1α2α3 .

Friedmann equations

H2 =
κ

3 ρ+ σ2 ; Ḣ + H2 = −κ

6 (ρ+ 3p)− 2σ2

It can be shown that σ2 ∼ a−6. The anisotropy plays a role of a homogeneous
fluid with equation of state w = 1 (i.e., ρa = pa = 3κ−1σ2).
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CRITICAL POINT

A critical solution (ρc, pc, ac, σ
2
c ) can be found by imposing the condition

H = H ′ = 0

p̃c = ρ̃c = −σ̃2
c

↓

4α3/2
c + re−α3

c
(
−3 + 2α3

c

)
= 0

This solution gives the minimum value α can have for the bounce to succeed.

The critical point is unstable: a value of α that is slightly larger than αc
leads to a bounce and a value which is slightly smaller leads to a collapse.

We can understand this instability in terms of the total sum ρtot + ptot.
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CRITICAL POINT

We can understand this instability in terms of the total sum ρtot + ptot.

First, from H = 0 we get,

ρtot = 0 , → ρ+ ρa = 0 → 1 − r e−α3

α3/2 +
s
α6 = 0 .

Imposing this constraint, the sum ρ+ p reads:

22



CONCLUSIONS

▶ We studied the effect of finite volume on the vacuum energy E0 of a scalar
field in a double-well potential. In this context, two effects emerge: the
Casimir effect (Ecasimir) and quantum tunnelling ([I ]).

▶ For a 3-torus, both contributions violate the null energy condition. Further-
more, the Casimir effect dominates over [I ]. This result strongly depends
on the geometry and boundary conditions.

▶ This effect can induce a bounce when coupled to gravity. However, the
bounce is not always guaranteed in more involved configurations.

Possible extensions:

∙ Systematic analysis of other geometries and boundary conditions.
∙ Gravitational collapse.
∙ Extra dimensions→ NEC violation and stability of the compact
dimensions.
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THANKS FOR YOUR ATTENTION
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INSTANTON CONTRIBUTION

The approximated result I showed during the talk is:

[I ] =
√

12m2

√
m3L3

πλ
exp

{
−2m3L3

λ

}
.

This result has been obtained ignoring the spatial gradients in the fluctuation
determinant. Introducing these corrections we obtain the following result:

[I ] = −
√

12m2

√
m3L3

πλ
exp

{
−2m3L3

λ

}
exp

{
G(3)

}
where

G(3) =+
′∑

n∈Z3

e−
k2
n

Λ2 log
3m2 + 2k2

n + 3m
√

k2n + m2

kn
√

4k2n + 3m2

−3m3L3

32π2

(
−21 + γE +

4Λ2

m2 − log
4Λ2

m2

)}
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INSTANTON CONTRIBUTION

Here I compare the approx. and the exact result for different values of λ.
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EFFECTIVE POTENTIAL

From ZE[0], we can find the effective action at the ground state (i.e., the zero-
point energy)

Γ[0] = − lnZE[0] ≃
∫

d4x√g Λ̄
(

1 − re−α3

α3/2

)

If we want to obtain the full effective action, need to include j.

▶ From ZE[j ] we obtain the effective theory in terms of an effective field ϕc

ϕc[j ] =
1
√g

ℏ
ZE[ j ]

δZE[ j ]
δj

−→ j [ϕc]

▶ The effective action Γ[ϕc] is defined through a Legendre transformation as a
functional of ϕc .

Γ[ϕc] = −ℏ ln(ZE[ j [ϕc]])−
∫

d4x√gϕc j [ϕc]
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EFFECTIVE ACTION

In practice, it is very difficult to obtain ϕc[j ] and invert it. However, for small j
we find

ϕc = −M−2 j +O(j 3) ; ϕc is linear in j !

For j = 0 we find ϕc = 0. Symmetry restoration.

Around the minimum, the effective action reads:

Γ[ϕc] = Γ[0] + 1
2

∫
d4x√g M 2ϕ2

c +O(ϕ4
c) .
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CRITICAL POINT

One can also infer a maximum value for the rescaled scale factor αiso at the
bounce, which happens when the anisotropy is negligible and the quantum
field dominates.

ρ̃ = 0
↓

α
3/2
iso = r e−α3

iso

Which leads to the two regimes

αiso ∼ (ln r)1/3 for r ≫ 1
αiso ∼ r2/3 for r ≪ 1 ,
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SIZE OF THE UNIVERSE AT THE BOUNCE

The critical solutions allow us to
estimate a size of the universe at the
bounce. Assuming λ ∼ 1:

αc(r)
m ≲ Lb ≲ αiso(r)

m

Example: for r = 1, if the bounce occurred
when L ∼ 1 m, the scalar field would need
a mass of ∼ 10−7 eV and a vacuum energy
Λ of order 10−140 ℓ−2

p .

Remember:

r ∼ κm4

Λ
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