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Entanglement and Interference

Interference in Space and in Time

Spatial double slit experiment (Davisson and Germer)

Electron passes slits at y =y or y =1 I —
. . Y
Spatial superposition at screen |i) = % (ly1) + ly2)) ’ -
Momentum state
=1 S U e 1 RIS 3 Y
(ply) = 75 (plya) + (ply2)) = o5 (e 7" +eh | <

Temporal double slit experiment (Lindner et al)

electron
— A == etecior
Ultra-short laser pulse ionizes atom when E(t) = Eax atom ——
Electron emitted at t =ty oratt =t; polarization

(Electron emitted at t = tg moves away from detector)
- 1
Temporal superposition |¢) = 7 (|t1) + |2))

Energy state i

(Ely) = % (<E|f1> + (E\t2>> = 12 (eféEtl Jre,%gtz)

=
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Entanglement and Interference

Temporal interference from entangles electrons (Palacios et al)

Entangled electrons
Sequential double ionization of helium
Electrons emitted at small At = t, — f; with AE At > h/2
Indistinguishable particles in singlet state

Nonrelativistic treatment of singlet state

Antisymmetric under exchange of electrons

1 i i . . .
P(ty, ) = \—6 [e‘ﬁ(E1t1+E2t2) + e_ﬁ(EltZ"’Eztl)} X antisymmetric spin factor Sq»

1 _ipr { IAEAt/2 | —iAEAt/2
== e nET |ei teh | xs
V2 12
T=3(h+h) At=t)—t E=E+E AE=E —E

Interference fringes in time domain

Problem: nonrelativistic states defined at different times are not coherent
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Entanglement and Interference

Requirements for a consistent theory of superposition in time

Space and time on same footing: (x,t) — x#
States transform under SL(2,C) covering group of O(3,1)

Relativistic Hilbert space
Coherent eigenstates of complete set of operators in a given representation
Defined with respect to a shared continuous parameterization

Basis states with spin

o,x#,T) or |0, p¥,T) defined at given time T
Trajectory-independent evolution parameter T: [T, x%#] =0
Wigner's induced representation of SL(2,C) over SU(2)
Spin = eigenstate of rotation generators € SU(2) C SL(2,C)
SU,(2) operates in spacelike hypersurface normal to timelike n# (usually n# = pH)
Induced SL(2,C) boosts x#, p# but rotates spin components in hypersurface
Coherent states must belong to same representation of SU(2),, — same n¥

Many body state — irreducible representation of coherent product states
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Stueckelberg-Horwitz-Piron (SHP) Covariant Mechanics

Framework for classical and quantum special and general relativity
External evolution parameter T advances monotonically
8D phase space (x#,%#) — %% unconstrained

Event x*(T) can change direction in coordinate time x? — antiparticle

Free event described by Lagrangian and equivalent Hamiltonian

1. . 1 ,
Ly = EMx”xy Ky = mp"py pu = OL/ox"
Euler-Lagrange and Hamilton equations
d oL oL . 0K , oK
= —— — = X = — p],[ - — =
dt oxt#  dxt py oxy,

Stueckelberg-Schrodinger equation with interactions
i0:¥ (x,7) = KY (x,7) Ky — K=Kp+ V(x)
Horwitz-Piron-Reuse representation of spin
Modified Wigner representation of SL(2,C) from SU,(2)
Induced on arbitrary timelike vector n# # p#
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Stueckelberg-Horwitz-Piron (SHP) Covariant Mechanics

Generalized central force problem

Relativistic bound state solutions

Spinless particles of spacelike separation x = (f,r)

7, = di (1,-1,-1,-1)
Replace V(r) — V(p) 0= \/m ‘ ! o8 ‘

To obtain correct spectrum and multiplicity — break spacetime symmetry

Choose arbitrary spacelike vector s#
Restrict dynamics to subspace of spacelike {x ] x2<0, x3 <0}
States 1, transform under O(2,1) C O(3,1)
Induce representation of O(3,1)
O(3,1) on ip, —> generators containing (x*,0/9x") and (s#,d/0s")
Generators — Casimir operators — eigenvalues — full state characterization
Zeeman and Stark effects (Land)
Dynamical s (1) —> extended phase space {(x*,x"), (s#,$")}
O(3,1) generators X' couple to electromagnetic Fy,
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Classical extended phase space (extra dimensions)

Gauge theory

Classical phase space and gauge fields
{(e2), (248"} {ar (x,0), 0" (x,0)}
Classical Lagrangian
1. .. 1. sus ) :
L= EAAxny%—EAdgygy—%exyAﬂ(x,C)%—e@VXV(x,g)

Gauge invariance

A A D D (D) + o
Variation with respect to x* and ¥ —— Lorentz force
Mz () = eF" (x,) () + eH" (x,0) , (1)
ME"(t) = eGM (x,0) §, (1) — eH" (x,8) du(1)
Field strengths
puv = 94T 0A¥ g = X ot grv = X 9AT
dx,  dxy 9,  9g, dx,  dg,
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Classical extended phase space (extra dimensions)

Gauge invariant scalar Hamiltonian

Canonical momenta

oL . . 1

Pu =5 = My +edy — =M (Pu — eAy)
oL . . 1

Ty = 785” = ng +exy — Cy = (ny —exy)

Hamiltonian
1
K= oo [ (0" —eA) (py —eAy) + (" — ex) (mu —exq,) |
Horwitz-Piron-Reuse representation of spin
Induced representation on arbitrary timelike unit vector n# # p#
We identify n* — n#(7) = n#(1t)/M
Entanglement = particles in same representation of SU(2),

Requires evolution n!' (T) = n?(‘r) for component states i, j
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Classical extended phase space (extra dimensions)

Equations of motion

Two classical particles with identical initial conditions
g1 (0) = 25(0) 1 (0) = 5 (0) — n{(0) = n5(0)

Hamilton equations for 71?(7)

7.[114 — % [Vl{ _eAV (x1/C1)} 0Ay (x1,04) + [ﬂ11/ —ex (x1, 51)} oxy (x1, gl)‘|

e %
94, (10, ax, (x2,
= “pz e | S ¢ [t ) Xéég)]

Case 1 AY (xll g) 7é A" (XZI g) or XV (xll g) 7& XV (XZI g) = ”il 7& 775
Case 2 AF = AF (x) and x* = x# (0)
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Quantum states: unitary representation of Poincaré group

Lie algebra

Unitary Poincaré transformation [¢') = U (A, a) |i) on extended phase space
Lorentz transformation A € O(3,1) and translation a
U (A, a) ~1+ia (Py +T1,) + i (Lyy + Nuy)
Two independent sets of Poincaré generators
Lyv = (XuPy = XuPy) Ny = (éyHU - QH#)
Py, =id/aX" IT, = id/ag"
P? unconstrained in SHP framework
IT? |p) = M? |) on states — describe spin on (gy,nﬂ) sector
Lie algebra

Ly, Pr| = i (guoePy — SuoP Same relations for
(L, Po] = i ($uoPy — guoPy) e

[LHV,LPO] = i (g"PLHT + gHTLYP — gP[VT — gV 1P)
[Py Py] = ([ 1] = [P TL] = [Py New] = [Ty, Lev] = [L9, Ne7] =0
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Quantum states: unitary representation of Poincaré group

Standard representation theory for Lorentz group
Partition generators My = Lyu + Ny into boosts My; and rotations M;;
Partition inequivalent left and right handed representations of SU(2)
Decomposes SO(3,1) = SU(2); ® SU(2)r

Two components spinors transform under AMR € SL(2,C) where

At —exp (B-c/2+iw-0/2) AR =exp(—p-c/2+iw-c/2)
Inequivalent bases for SL (2,C) using 0¥ = diag(1,1) and C = ic?

ot = {00,0'} ot = CU;ECJr = {0’0,—0'} o' = Pauli matrix
Raise/lower spinor index &, = A, ﬁgﬁ — " =C! “5A57C75§§
Vector representation of O(3,1) by SL(2,C)

X =29 + xlo! + x20% + 23 — X' = AXAT

Conserves detX = det X' = x#x, because detA =1
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Quantum states: unitary representation of Poincaré group

The little group and Wigner operator

Little group
A€ SL(2,C) associated with Az € SO(3,1) is stabilizer of 7t

L ()= {An € SL(2,C) ‘ n = A, Al = n}
Fix standard momentum 7t with known L (7r)
Wigner operator

w () € SL(2,C) generated by Ny, that takes &7 — 7
m=ua(n)fa’ (n)

Construct £ () from L (7r)

Ape L(f) — Ap=ua(m) Ay o~ () € L ()
Isomorphism SL(2,C) = L (7)

A€SL(2,C) — A=a(n') Ay o' (7)
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Quantum states: unitary representation of Poincaré group

Fix standard 7t and Wigner operator

Standard momentum
Horwitz-Piron-Reuse chose arbitrary timelike vector 77 = (1,0,0,0)

In SL(2,C) representation /i = 109 = ( (1) (1) )

Associate 7t = Mn" — 7t = Mo
For As € L (7)
Mi= Ay Min AY, — AL =A1 — L(#)=SU(2)
Wigner operator

a(m) = exp (B-0/2) = pure boost in direction B

General momentum 7
=o' (1) fra () = a (1) Mo (1) = M [a (7))?0° = Mexp (B-c)d°
=M (¢ cosh + B osinh ) rapidity B = tanh~! |rr|/7°
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Quantum states: unitary representation of Poincaré group

Basis quantities for states with spin
Momentum states with spin

Eigenstates |71, p, o) of operators Py and II,,
Pauli-Lubanski pseudovector

Denote Ny, =I1,,/M

1
Wy = _EeuvAaN”Na W, Nt =0 (Wi, Np] =0

Casimir invariant WFW,, — spin operator %NijNij in frame 71
Unitary representation U (A) of Lorentz transformation A

PHU(A) |7, p,0) = p U (A) |, p,0) = A yp” U (A) |, p,0)

IT* U (A) |, p,0) = 7" U(A) |, p,0) = A v U(A) |m,p,0)
Frame covariance

Y (7, p) =¢(mp) — ¢ (mp) = (A n, A p)
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Quantum states: unitary representation of Poincaré group

Unitary representation of transformation on spin states
Identity operator for states with spin

I = Z/dy (p)du (2') |7, p',0") () p'd|
Matrix element for U (A)

(7,0, d|U(N) |7, p,0) =6* (p — Ap) 8* (W' — ARt) Vo (1,1, A)

Unitarity
1=U (A) u (A)+ — ZV(TLT’ gl = ZVUO’ (7’17” = (50-(7//
Lorentz transformation on spin state

U(A) |, p, o) =Y Voo (m,p,A) |Am,Ap,o)
0-/
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Quantum states: unitary representation of Poincaré group

Unitary representation of Wigner operator
Unitary representation of Wigner operator « (77)
Pure boost constructed from N% — does not act on p or &
Define U (a (7)) |7, p,0) = |7, p,0)
Little group
General A € SL(2,C) associated with A € SO(3,1)
V1o (75, p, A) = unitary representation of A
Little group element Az = a™! (1) Aa (71) € L (%)

(70,0 |U (A ) 175,p,0) = Voo (., A) 6 (p = ) 6% (0 = 1)
V1o (71, p, A) = unitary representation of Az € £ (71) = SU(2)
Matrix element for U (A)
(¢, | U (A) |, p,0) = 6 (p' = Ap) 6* (' = A) Vi (1, p, A)
Pure boost of p# and 7t/

Rotation of spin indices in hypersurface normal to 7t#
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Quantum states: unitary representation of Poincaré group

Basis spinors for SL(2,C)
Wavefunction transformation
¥, (70, p) ZVU’ P A) Yo (A1, A Tp)
Voo (n, p,A) = unitary representation of Ay € L ()
Apesu@R) — u (Kﬁ) = Ay =a 1 (') A (7)
ol p) =L [a () Ax(A )] oy ¢ (A1, A7),
o
_ ; wim) A] L |a(aT iy (AT A )]

Multiply both sides by a(7r)
!
[« p)] =T Ave [w(A 1) (A1, A1) |
Spinor basis states

ap undergoes Lorentz transform as (ap)’ = A (ay)

Inequivalent representation transforms as (a¢)’ = A (a¢)
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Quantum mechanics in extended phase space

Bispinors

Horwitz bispinor

1 [ @) +ag(nx)
¥ x) = ﬁ —ap(n,x) + ap(n, x)

" matrices with Hestenes notation
State transforms as ¥/ (n,x) = S(A ) (A=n, A=1x)

i
S(A)=1- P — W= ;L W‘,v = 57" A
Kt =3%Mp, = %fﬂ‘/\n — Kf'ny = %n/\n =0
Transverse operators
Projection of basis vectors 'yi =9t —nn-")
== z“ﬂ AvY =W 4+ Kt — K" — 'y =0

6 independent components of K# and Z’f satisfy Poincaré Lie algebra

Generate boosts / rotations in spacelike hypersurface transverse to n*
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Quantum mechanics in extended phase space

Horwitz quantum Hamiltonian

Decompose spacetime momentum
1 1
P =5 (p+npn) pr=5(p—mnpn)
Ky =p) and Ky = ¥°p, Hermitian with respect to standard ¢# matrices

Free Hamiltonian
1 2 2\ _ Pz
M (Ki —K7) = PH +pi= M

Minimal gauge substitution

K} = (PH —EAH) ' (Pu —eAn) + (PH _eAH) A (Pu —€A||) = (Pu —‘fAn)z

K2 =15 (pL—eA)7  (pL—eAL) = —(pL—eAL) +e(pL AAL)
pLNAL= (pudv) v A = — (0uAv — AL T
Horwitz electromagnetic Hamiltonian
1

1
K=— (K2 —K%) = ——(p—eA)?
ZM(L T) ZM(p €)+

Ko =

2M P]NZ
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Quantum mechanics in extended phase space

Quantum Hamiltonian on extended spacetime
Minimal gauge substitution
P _ P _ .5
Ky = p) —e4y Ky =77 (pL—eAlL)

K[ = —ex Kf =" (m. —ex,)
Extended electromagnetic Hamiltonian

K= g [(66)" = ()] [ (k2)" = (k)

Commutation relations [p,, A,] = i%AV [, X)) = i%xv
K= A)? 2l 4 25 (Fuv + G £
= o1 [(P—eA) + (1 =)’ + 31 (B + Gu) 21

Field strengths
FM = 0A"/dx; — dA! /dxy GM = dx"/ag, —ox"/ag,
H" = dx"/dx, —dA"/dC, does not appear
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Quantum mechanics in extended phase space

Plane wave solution

Free particle Stueckelberg-Schrodinger equation
. p? 2
laT‘{I(g,x,T) - <2NI+2NI>‘Y(§,JC,T)

Plane wave solution

xg(ﬂ) .
¥lexn = icc(engg P [i <p'x+n'§_ p;zl/ln T)]
xW ()

Constant amplitudes x(7)(71) — N ¢(@) in frame 7w = 7 = M (1,0,0,0)

N is some normalization

=

G

Il
cooR

<

B

Il
cor o

=

©

Il
o, oo
— o oo
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Quantum mechanics in extended phase space

Boost to general frame

Boost 7t

it — 7t = Aft = exp (i,BkMOk) =M (cosh B, sinh ,BB)
State transforms as

YO (g, x,1) = S(A)F(AI, A~ 1x) = S(A)F)(Z, x,7)

Phase of plane wave is Lorentz invariant

N

P snnP
coshzc’ sinh: B0
S (A) = exp (~iz%p,) = 2 2

Four independent solutions

2 2
¥ (g, x,7) = N ul@ exp [i (,g.xm_g_ Pt T)]

ulo) =g (A) (@)
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Quantum mechanics in extended phase space

Transformed amplitudes

[ coshg ] 0 B ]
o 0 o cosh 5
s sinh 233 s sinhg (Bl - iﬁz)
i sinhg (Al—&—iﬁz) | —sinhg,B3 |
[ sinh g BS ] sinhg (,Bl - i.BZ) ]
N sinhg (Al + iBZ) 4@ —sinh gBS
coshg 0 B
i 0 | cosh 5 |

T(")(g, X, T)YO(Z,x,7) = N2 @ Dul@) = N2

IARD 2024
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Quantum mechanics in extended phase space

Spin-1/2 state

Pauli-Lubanski pseudovector

1 1 1
Wy = =5€uaeNINT — Wy = =S €T N7 = =€ TN
1flo-n 0 1] n%uc*  i(oxn),
Wo=—= Wi=-| . " i
0 2 { 0 on } T2l i(exn), nOck

Frame n =71 = (1,0,0,0) — Wy =0 and Wj diagonal
Ws¥ (M = 4¢(1) WY@ = —¢(2) W3 = 4+¢0) Wi¥ ™ = —¢@)

Total spin
1 1
WHW, = EZW\ZMn"Ng — %o ZVINEN, = EZ‘”‘ZW\

Independent of N# and commutes with all other generators

3% 0 1/1
‘W”Wﬂ“wg‘””wiwf’u[ 0 M‘z(z“)

Bispinor is spin-1/2 state
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Quantum mechanics in extended phase space

Vector spin operator

Orthonormal basis e’ for spacelike hypersurface
M
Wk =0 — W=Jek — WH=W.q# =] (ek>
Components Jj are vector spin operator

Total spin is —y, WHWVY = —ﬂkk/]k]k/ =J? =

M

n = boost of 71 along 3-axis — orthonormal basis

e =1 =n0q0 _ 3)40) el =4 e? = o2 &3 = n(0)y3 30

0) _ 2
10 —,/1+n(3)

Vector components Jk=W.ek = (Wo’)fo + Wl-'y") ek

i _1 nOt  indo? i _1 n%?  —indc!
V7o | inBe? nO! 272 | —inde!t 02
b= 1[0
3= 2 0 0-3
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Quantum mechanics in extended phase space

A singlet state

Plane wave state

“F(‘T)(g,x,”[) =¢ (L, x,7) u(?) (1)
q)(glx/T) ZNexp |:z (px+7l'€_ p2+7‘[2T>:|

2M
Singlet state

¥(©) (C1, G x1,%2,T) = ¢ (81, 0o, X1, X2, T) u® ()
Spacetime part symmetric under ({3, x1) <> ({p, x2)

1
¢ (gll €2/ X1, X2, T) = ﬁ [(Pl (g]lxllT) ()] (€2/ X2, T) + P2 (gllxllT) 1 (€2/ X2, T)]
Spin part requires J31(71) 4 J[31(72) = 0 and antisymmetry under o7 <> 0

u® () = {ug‘fl) (1) ugm (1) — ugvz) (1) uéal) (n)}

V2
One-particle states transform under same representation of SL(2,C)

Parity permits singlets from pairs {u!, u?} and {u3,u*}
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First order perturbation in constant field

First order Hamiltonian

To first order in e

1 e e
K= 4 (p* + ) — g Aprx T+ o (Fuw + Gu) /Y
L diti J AF =0 J F=0
orenz condition Y = WX =
Constant field strengths F,y = Gy
AW = _EFVV_X XV = _EFP’Vg
20 20 Y

e e
_M(A'P‘f‘)('”) = WFMV (x‘upv+€y7rv)

Perturbed Hamiltonian
K=Kp— ﬁl—}w (LM 4+ NM) + %FWZT’ by antisymmetry of FFV

L* and N generate Lorentz transformations on extended spacetime
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First order perturbation in constant field

Magnetic field

Pure magnetic field
Foy =0 Fj = & B*

Interaction terms
1
5 Fu (L 4+ NF) =B ] F,2'=B-J
1 y S
Jik = seipM’ = (x x p+T x )y T = .sl].szL
Orbital angular momentum in extended spacetime and spin

. . e
Jk vanishes for plane wave solution — Kgpjy = HBkjk

In frame defined by pure boost along 3-axis 71 — T =M (n(o),O, O,n(3)>

3 2 1, p2.2 . (0),,(3 2 21
e B(f3+n(0)(B10 + B%*0?) m()n()(Bla — B%0)
spin = 57 in©n® (Blo? — B2gl) B33 +n%0) (B'o! + B%?)
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First order perturbation in constant field

Magnetic field along 3-axis

Magnetic field B = (0,0, B?) along 3-axis

X ., + (eB3/2M) ¥, 0=1,3
P — (eB3/2M) ¥ |, =24
T2 4 2 3

N2677 [p o +§§A‘W>] L 0=153

<p,7T,0'/|K|p,7T,U'>: 2 2 3
N7 {p 2erv1n - ;i/l‘?(”)] , 0=24

Total mass eigenvalues of {1,2} and {3,4} singlets conserved

ul12) (1) = é (! ()l () = ul? ()l ()]
B () = \1@ [ (m) s () = ) () Y ()]
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First order perturbation in constant field

Magpnetic field along 1-axis

Magnetic field B = (B!,0,0) along 1-axis

2 o1 (0)4,(3) ;2
1 ne.\ o nWnig
Kspin = —BB © ‘ n = (cosh B,0,0,sinh ) ‘
sp 2M | ;(0),3)j,2 ”%o)‘rl

Real but off-diagonal
Produces transition in spin states
No shift in 7t# that could disrupt the singlet
Non-zero transition amplitudes
(p,m,2| Kspin lp, 7, 1) = (p, 7,1 Kspin lp,,2) = (EBl/ZM) cosh

(p, .4 Kspin lp, m,3) = (p, m,3| Kspi'rl lp, 7, 4) = (EBl/zM) cosh

Transition

w0 () — = [u® (1)) () — ) () uf? ()] = w02 ()

V2

Equivalent to exchange of particles
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First order perturbation in constant field

Electric field

Pure electric field

Foi = E; Fj=0
Interaction terms
__ ¢ 0i 0i e w _ 2€ . oo
4MF,,VMV = —53;Fi (LY 4 N) 2=l = BT
LOi —_ xopi o xiPO Lgl — é’Oni o é—inO

Expectation values of extended spacetime boost operators vanish
Boost operator in spin space

29 = 2% — 2000 — 2nin' + Xinmn°

2e . e 0 T (o
Kspin—MEiZ(f_M[T ()}
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First order perturbation in constant field

Perturbations from anti-Hermitian and non-compact boost generators

Electric field E = (0,0, E®) parallel to boost of & — 7 =M <n(0),0, O,n(3))
T(0) = —infy (E1o" + E20?) —n©nl® (E'e? — E%¢') =0
Electric field E = (E',0,0)

eEl 0 n®gl 4+ n0ig? ]

i—n()

Kopin =171 n® ol 4+ n0ig2 0

Non-zero transition amplitudes

(2| Kgpin [1) = i%fﬁ sinh B (1] Kgpin [2) = i%eﬁ sinh B
(4] Kspin 1) = i%e*ﬂ cosh 8 (1| Kspin |4) = —i%eﬁ cosh 8
(2| Kspin 13) = i%eﬂ5 cosh 8 (3| Kspin 12) = —i%eﬁ cosh 8
(4] Kspin 3) = i%fﬂ sinh 8 (3| Kspin [4) = i%eﬂ’ sinh 8
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First order perturbation in constant field

Perturbative transitions in electric field normal to 7r
Allowed transitions for u(1)

eE> o
(2| Kspin |1) = iS¢ f sinh B

eE3 , | eE3 , | "
(1] Kspin 12) = Zﬁeﬁ sinh = _lﬁeﬁ sinh (—B) = (2| Kspin |1>/3 - —B
E3
(4] Kopin 1) = ieﬂfﬁ cosh B
e

1| Kypin |4) = —i
<|Spm|> lM

eP cosh B = (4| Kspin s —p

Generally for 1 < 2,4 and 3 < 2,4
(o] Kspin lo") = (¢’ Kspin |0'>E — —B

B — —pB = parity transformation of 7

=M (cosh 8,0,0,sinh ﬁ) ——— Pli=M (cosh 8,0,0, — sinh /s)
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First order perturbation in constant field

Parity transitions in electric field

B — —pB for spin states

u(W) = (cosh B/2,0,sinh B/2,0) ﬁ P [u(l)] {u(l),u(z)} and
o

u® 44

u(?) = (0,cosh /2,0, — sinh B/2) =5 7 [u@)} tre{msform un}der

o
5 ' 5 inequivalent

u® = (sinh $/2,0,cosh f/2,0) W -P [M( )] representations of

SL(2,C)

u® = (0,—sinh p/2,0,cosh p/2) —— —P [”(4)]
B— —p

Possible transitions induced by perturbation on singlet state u(12)

412 e 412 43
Pairs belong to same Hilbert space — mutually coherent
w12, 23 W12 4

Pairs belong to different Hilbert spaces — not mutually coherent

Perturbation may disrupt coherence of singlet state
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