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Non-minimal scalar fields in cosmological spacetimes

1. Quantum field theory in cosmological spacetime

2. Gravitational Baryogenesis Model

3. Infrared distortion of quantum fluctuations from Inflation



Quantum field theory in cosmological spacetime
In the absence of a full quantum gravity theory: quantize matter
field in a curved classical geometry

Aµ,ϕ,ψ→ Âµ, ϕ̂, ψ̂, gab → gab.

Example free scalar field

gab∇a∇bϕ+ m2ϕ+ ξRϕ = 0, [ϕ̂, π̂] = i h

In the context of cosmology it is useful to take advantage of the
symmetries of FLRW spacetimes

ds2 = a2(τ)(dτ2 − dx⃗2) → ϕ̂(⃗x, τ) = a−1
∑

k⃗

hkei⃗k⃗x Â⃗k + h∗
k e−i⃗k⃗xÂ†

k⃗

where the modes hk is harmonic oscillator

h ′′
k + (k2 + m2a2 + (ξ− 1/6)a ′′/a)hk = 0



Quantum field theory in cosmological spacetime
Quantization of scalar field in FLRW

ϕ̂(⃗x, τ) = a−1
∑

hkei⃗k⃗x Â⃗k + h∗
k e−i⃗k⃗xÂ†

k⃗

Some features/obstacles of quantization in curved spacetimes:

1. There is no preferred positive/negative frequency splitting, no
unique Poincare vacuum state, no ground state of Hamiltonian.

2. Vacuum expectation values (vev) of bilinear fields diverge. No
normal ordering available.

3. Any quantum state yields non vanishing vev of the
stress-energy tensor. semi-classical Einstein equation:

Gab +Λgab = κ⟨Tab⟩

QFTCS offer techniques to consistently address this issues.

Aim: incorporate these techniques for applications in cosmology.



CASE 1: GRAVITATIONAL BARYOGENESIS MODEL



Motivation: Baryogenesis

The manifest asymmetry of matter and antimatter is an open
problem in current cosmology:

η ≡ nB − nB
s

= 2.74 · 10−8h2ΩB.

[Lambiase et al., 2013]

ηCMB ∼ (6.3 ± 0.3) · 10−10 0.0215 ⩽ ΩBh2 ⩽ 0.0239

ηBBN ∼ (3.4 ± 6.9) · 10−10 0.017 ⩽ ΩBh2 ⩽ 0.2024

Sakharov conditions
1. Process with baryon violation.
2. Charge C and Charge-Parity CP violation.
3. Departure from thermal equilibrium.



Gravitational Baryogenesis Model [Davoudiasl et al., 2004]
The GBM requires in thermal equilibrium

B → B +
1

M2
∗

Ja∇aR =⇒ η ≈ ∂tR
M2
∗T

∣∣∣∣
TD

Observed value for TD ⩽ MI and M∗ ⩽ MP in radiation dominated
era TD ⩽ RD. The new interaction acts as a "chemical potential".

B ↛ B,η = 0 B → B,η ̸= 0 B ↛ B,η =frozen

TD
Sakharov conditions

1. Process with baryon violation. �
2. Charge C and Charge-Parity CP violation. �
3. Departure from thermal equilibrium. �

Aim: non-minimally coupled (complex) scalar field with GBM



Complex Scalar field in cosmological spacetime

Assume a complex scalar filed and a flat FLRW spacetime(
gabDaDb + m2 + ξR

)
ϕ̂(x) = 0 Da := ∇a + i

1
M2
∗
∇aR

We can quantize the field in a FLRW ds2 = a2(τ)
(

dτ2 − dX2)
ϕ̂(⃗x, τ) =

1
a

e−iβR
∑

k⃗

(
B⃗khkeikx + D†

k⃗
h∗

k e−i⃗k⃗x
)

Observables of interesta

aObservation: ja and Tab do not depend on βR ′

ja = i(ϕ†Daϕ− (Daϕ)
†ϕ) Tab =

1
2

DaϕDbϕ
† −

1
2

gabDcϕDcϕ
† + ...

Φ2(x, x ′) :=
1
2

(
ϕ(x)ϕ†(x ′) + ϕ†(x ′)ϕ(x)

)



Quantum states: vacuum state

Given a base of modes hkeikx an the associated B⃗k,D†
k⃗

The vacuum is
defined as B⃗k |0⟩ = D⃗k |0⟩ = 0.

Problem: not a unique prescription. Possible candidate:

low energy states [Olbermann, 2007]

Ek[f ] :=
∫

dτ
√
−gf 2ρω[k] ρω[k] = (⟨ω| Tab |ω⟩)k uaub

f compactly supported. Choose hk such that it is minimizes.

Examples:

Minkowski: hk = 1
(2
√

k2+m2)1/2 e−ikτ, Conformal: hk = 1
(2k)1/2 e−ikτ

However, for the GBM we need a thermal state and a notion of
chemical potential!



Quantum states: KMS condition

In Minkowski (or static space time) we introduce a temperature and
chemical potential as follows

K(ubo)M(artin)S(chwinger) condition β = T−1(
ηabDaDb + m2

)
ϕ(x) = 0 Da := ∂a + µδa0

⟨KMS|Φ2(⃗x, τ; x⃗ ′, τ ′) |KMS⟩ = ⟨KMS|Φ2(⃗x, τ+ iβ; x⃗ ′, τ ′) |KMS⟩

⟨KMS|Φ2 |KMS⟩ = ⟨vac|Φ2 |vac⟩+∑
k

eik(x−x ′)

Ek

1
e(Ek+µ)β − 1

+
e−ik(x−x ′)

Ek

1
e(Ek−µ)β − 1

Ek =
√

k2 + m2

One can extract all possible information: relation with statistical
mechanics 2.

Problem: Not suitable in time dependent backgrounds (FLRW).
2Equivalent to Z = Tr eβ(H+µN) in non relativistic case.



Quantum states: local thermal equilibrium (LTE) state

A local equilibrium thermal state proposal [Buchholz et al., 2002]

Local Thermal Equilibrium (LTE) states
For a given temperature distribution β(x)

1. Fix a set of thermal observables of order n: {Φ2(x),∂µνΦ
2...}

2. Construct KMS states for a fieldϕ0 in Minkowski spacetime.
3. A LTE state is that for the set of 1. it equals the associated

observables of state in 2. replacing β→ β(x). Example:

⟨LTE|Φ2 |LTE⟩ = ⟨KMS|Φ2
0 |KMS⟩β(x)

[Solveen, 2012] showed how to construct it for flat spacetime.

Not clear how to construct in FLRW spacetimes [Verch, 2012].

Not suitable for the GBM R ′ since it vanishes.



Quantum states: average (A)LTE state
Remember

Ek[f ] :=
∫

dτ
√
−gf 2ρω[k] ρω[k] = (⟨ω| Tab |ω⟩)k uaub

It is time independent and minimum! Role of Hamiltonian in
Z = Tr eβ(H+µN). Also can define

µQk[f ] :=
∫

dτ
√
−gf 2a−4 1

M2
∗

R ′

We can then define a fieldϕA whose mode satisfy(
(∂0 + µ)

2 + E2
k
)

gk = 0

Average Local Thermal Equilibrium (LTE) states
For a given temperature distribution β(x)

1. Fix a set of thermal observables of order n: {Φ2(x),∂µνΦ
2...}

2. Construct KMS states for a fieldϕA in Minkowski spacetime.
3. A ALTE state is that for the set of 1. it equals the associated

observables of state in 2. replacing β→ β(x).



ALTE for the Gravitational Baryogenesis model
For general FLRW and scalar fields not trivial to find ALTE. But for
GBM we can safely assume

1. T > 100GeV, ultra-relativistic particle m = 0 ξ = 1/6.
2. Focus on the decoupling time and assume R ′ almost constant.
3. Radiation era: β(x) = T(τ)−1 = a(τ)T−1

0 .

We find the ALTE for the GBM to be

⟨ALTE| : Φ2 : |ALTE⟩ = e
− i

M2∗
(R(τ)−R(τ ′))

a(τ)a(τ ′)

∑
k

eik(x−x ′)

k
nk +

e−ik(x−x ′)

k
nk

with

nk =
1

e(k+µ)β − 1
nk =

1
e(k−µ)β − 1

We can compute the baryon asymmetry number

nB − nB ≡ ua ⟨ALTE| : ja : |ALTE⟩ ≈ R ′(τD)

3a(τ)M2
∗



Bonus: Deviation from radiation dominated universe
Trace anomaly prevents a pure radiation dominated universe with
R ′ ̸= 0. The semiclassical Einstein equation

R = 8πGN : ⟨Ta
a⟩ :

Using our ALTE state we obtain

⟨: T0
0 :⟩ = π2

30
T4 +

R ′(τD)

4a2M∗
T2 +

1
2880π2

(3)
H0

0

⟨: T i
i :⟩ = −

π2

90
T4 −

R ′(τD)

12a2M∗
T2 +

1
2880π2

(3)
Hi

i

which yields (including all type of matter fields)

R = −8πGN
Ns + 11Nf + 6Nv

2880π2 (RabRab)

and the baryon asymmetry is computed in (almost) radiation

η ≈ 720π2

g∗
k3

√
g5
∗

905
T9

M7
pM∗

recovers the observed result for values TD ⩽ MI and M∗ ⩽ MP! �



CASE 2: Generation of Quantum Fluctuations in de-Sitter



Quantum fluctuations from de-Sitter

Quantum fluctuations are created in expanding universe (Parker,
1968).

An inflationary de-Sitter universe strong enough to generated
classical inhomogeneities for structure formation.

Typical observables we need to compute:
⟨ϕ2⟩, ⟨Tab⟩, etc.

These are ultraviolet divergent and need a proper regularisation
mechanism



Expectation values of observables
Assume a (real) scalar field (ξ = 0) in de Sitter spacetime a ∼ eHt.

Quantization of scalar field in FLRW

ϕ̂(⃗x, τ) =
∑

hkei⃗k⃗x Â⃗k + h∗
k e−i⃗k⃗xÂ†

k⃗

The vacuum state is the Bunch-Davies state. The v.e.v of two point
function and the energy density in that state are

⟨ϕ2⟩ =
∫

d3k∆ϕ, ∆ϕ = |hk|
2; hk =

−i
√
τπ

2a
H(1)√

9/4−m2
(−kτ)



Expectation values of observables

ρ ≡ ⟨Tabuaub⟩ =
∫

d3k
[
|h ′

k|
2 + (k2 + a2m2)|hk|

2]

It is easy to check that these integral diverge in the limit k → ∞!
Use adiabatic Regularization!



Introduction to Adiabatic Regularisation

• Regularise: detect the divergent part and eliminate it in a
meaningful way. E.g. scalar auto-energy QED

Γ
µν
2 = ie2

∫
d4k
(2π)4

−4kµkν + 2gµν((p − k)2 − m2)

((p − k)2 − m2 + iϵ)(k2 − m2 + iϵ)

• Dimensional regularisation in perturbative scalar QED in
Minkowski spacetime

Γ
µν
2 =

−e2

8π2 (p2gµν − pµpν)

∫ 1

0
dx(2x − 1)

(
2
ϵ
+ finite

)
• Divergences can always be reabsorbed in finite counter-terms.
• Infinite ways of subtracting the finite part: once fixed the

experiment, subtraction scheme is fixed. E.g. electric charge



Introduction to Regularisation

• Regularisation of observables, e.g. the two point function
(covariantly, locally):

• Different methods proposed. They can differ by:

⟨: ϕ2 :⟩− ⟨: ϕ2
:⟩ = αm2 + βR

• Adiabatic regularization (Parker-Fulling, 1974) subtracts
directly the power spectrum

⟨: ϕ2 :⟩ =
∫∞

0
dlnk(∆ϕ − Qk))

• It is constructed by a WKB type expansion of the mode
solutions hk in of time derivatives

Qk =
1

2a2ωk
−

(ξ− 1/6)R
4ω3

k
, ωk =

√
k2 + m2a2



Adiabatic regularisation for Quantum fluctuation

Potential change of standard observable predictions for slow-roll
inflation: [Agullo, Navarro-Salas, Olmo, Parker- PRL 2008, 2009]



Adiabatic regularisation for Quantum fluctuations



Physical Scale Adiabatic Regularization (PSAR)

• Different methods can differ by:

⟨: ϕ2 :⟩− ⟨: ϕ2
:⟩ = αm2 + βR

• For ⟨: Tab :⟩ three arbitrary parameters.
• Adiabatic regularisation can be extended to include these

arbitrary parameters. (AF & J Navarro-Salas, 2019: A F &
Torrenti, 2023): Physical Scale Adiabatic Regularization

• It is based on a modification of the WKB ansatz
• For the two point function

Qk =
1

2a2ωk(m)
−

(ξ− 1/6)R
4ω3

k(M)
, ω(M)k =

√
k2 + M2a2



PSAR for Quantum fluctuations



PSAR for Quantum fluctuations



Renormalization conditions

To connect with observations we need to fix the couplings at a
given renormalization point. The semiclassical Einstein equations

1
8πG

R − 4Λ− α□R = ⟨: Ta
a :⟩M; ∇a⟨: Tab :⟩ = 0

Idea: fix scale M = m, for R ≪ m2, can construct ⟨: Ta
a :⟩m

1
8πG0

R − 4Λ0 − α0□R = O(m−2)

Back to the scale of inflation

1
8πG0

R − 4Λ0 − α0□R = ⟨: Ta
a :⟩m;

Problem: We still want to use ⟨: Ta
a :⟩M and not ⟨: Ta

a :⟩m.



Running couplings
The difference between ⟨: Ta

a :⟩M and ⟨: Ta
a :⟩m can be reabsorbed in

Λ, G, and α s.t. the semiclassical EE are independent of M We want
to go from

1
8πG0

R − 4Λ0 − α0□R = ⟨: Ta
a :⟩m;

to

1
8πGM

R − 4ΛM − αM□R = ⟨: Ta
a :⟩M;

the difference between couplings is

ΛM = Λ0, αM = α0 −
1

32π2 log

(
m2

M2

)
GM =

G0

1 + G0
12π

(
m2 − µ2 + m2 log

(
m2

M2

))



Running couplings

GM =
G0

1 + G0
12π

(
m2 − µ2 + m2 log

(
m2

M2

))
Quadratic corrections are present in the Asymptotic Safe approach
to quantum gravity (Reuter, 2008; Sauerressig 2023)

G(k) =
G(k0)

1 +ωG(k0)
(

k2 − k2
0
)

Possible universality of running of the Newton constant



Conclusions

1. Quantum field theory in curved spacetime has accumulated
many techniques to address the issues not present in flat QFT.

2. To gain a good understanding of our early universe we require
these techniques.

3. It can lead to new insights and physics that could potentially
impact current and future measurements.
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